
1 
 

Digital Carbonate Rock Physics 
Erik H. Saenger1,2, Stephanie Vialle3, Maxim Lebedev3, David Uribe2, Maria Osorno4, Mandy Duda1, 
and Holger Steeb4.  
 
1International Geothermal Centre, Bochum, 44801, Germany 5 
2Ruhr-University, Bochum, 44801, Germany 
3Curtin University, Perth, Australia 
4University of Stuttgart, 70569 Stuttgart, Germany 
 
Correspondence to: E. H. Saenger (erik.saenger@rub.de) 10 

Keywords: Carbonates; Effective elastic properties; Permeability; Digital Rock Physics; Nano-
indentation; 

Abstract. Modern estimation of rock properties combines imaging with advanced numerical 

simulations, an approach known as Digital Rock Physics (DRP). In this paper we suggest a specific 

segmentation procedure of X-Ray micro-Computed Tomography data with two different resolutions for 15 

two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous 

laboratory study which we complement with nano-indentation experiments. In a first step a non-local 

mean filter is applied to the raw image data. We then apply different thresholds to identify pores and 

solid phases. Because of a non-neglectable amount of unresolved micro-porosity (“micritic phase”) we 

also define intermediate phases. Based on this segmentation we determine porosity-dependent values 20 

for P- and S-wave velocities as well as for the intrinsic permeability. The porosity measured in the 

laboratory is then used to predict the effective rock properties for a comparison with experimental data.  

Anisotropy is observed for some sub-samples, but seems to be insignificant in our case. Because of the 

complexity of carbonates we suggest to use DRP as a complementary tool for rock characterization in 

addition to classical experimental methods. 25 
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1 Introduction 

Three-dimensional information on rock microstructures is important for a better understanding of 

physical phenomena and for rock characterization on the micro-scale. Various destructive and non-

destructive methods for obtaining a 3D image of the rock microstructure exist (Madonna et al., 2013, 

Cnudde and Boone, 2013, Fusseis et al., 2014, and references therein). The most common non-5 

destructive 3D imaging technique for rock samples is X-Ray Computed Tomography (XRCT). A 

common problem, however, is a clear trade-off between sample size and resolution. For each material a 

specific, and large enough, sample size is required to ensure that the selected volume is representative 

of the physical property to be computed. It can, however, be at the expense of a lost of pore features 

resolution. In the last decade, the X-Ray micro-Computed Tomography (micro-XRCT) method became 10 

widely available and many modern studies have made use of it to obtain 3D rock images. The resolution 

of micro-XRCT of up to (0.6µm)3 (voxel size) is high enough to image the spatial distribution of grains, 

pores, and pore fluids.  

Rock images from 3D XRCT can be used for predicting properties such as porosity, permeability, pore 

size distribution, effective elastic moduli, or electrical conductivity. For example, Darcy permeability 15 

can be predicted by numerically simulating single-phase fluid flow through 3D rock models, with the 

numerical results being in reasonable agreement with laboratory measurements (e.g. Saenger et al., 

2015). In this case, the resolution of the micro-XRCT technique is sufficient, because fluid pathways 

predominantly follow larger pores. However, if the porosity is much smaller than 1µm the agreement 

might be less satisfactory due to resolution limitations. On the other hand, mechanical properties, such 20 

as the effective elastic moduli, strongly depend on the microstructural details of the rock, which stay 

unresolved by the micro-XRCT technique. The inability to fully characterize the microstructural details 

of a rock sample can lead to a disagreement between numerical estimates of mechanical properties 

based on micro-XRCT images and laboratory data.  

An example of such a disagreement between laboratory and Digital Rock Physics (DRP) estimates is 25 

described in Andrä et al. (2013a,b). In these benchmark papers a comparison between different 

numerical methods is presented. All DRP estimates of the effective elastic bulk modulus use the same 

segmented dataset. Regardless of the approach all numerical predictions overestimate the bulk modulus 
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measured in the laboratory. This conclusion is mostly based on Berea sandstone although carbonates are 

considered in this study as well. However, also Jouini et al. (2015) reports about an overestimation of 

effective elastic properties of carbonates by DRP. Therefore we conclude here that the digital rock 

images themselves and/or the computational workflow has to be improved to provide better estimate of 

effective properties of rocks. In this paper we consider in detail a carbonate dataset and suggest 5 

techniques to achieve a better agreement between numerical predictions and laboratory measurements. 

Our study is complementary to the DRP-carbonate studies performed in Lopez et al. (2012), Andrä et al. 

(2013a,b) and Jouini et al. (2015). 

2 Rock Samples and Laboratory Characterization 

2.1 Carbonate samples 10 

We studied samples of two carbonates from the Upper Cretaceous carbonate system of the Gargano-

Murge region (Southern Italy). Carb-A is a limestone from the Paleocene-Eocene Peschici formation, 

and Carb-B is a micritic mudstone from the Late Cretaceous Monte Acuto formation (Martinis and 

Pavan, 1967; Cremonini et al., 1971). Both carbonates are composed of nearly 100% calcite (Scotallero 

et al., 2014). SEM images showing the microstructure of these two samples are given in Figure 1 of 15 

Vialle et al (2013). Both carbonate samples display a matrix of micrite (abbreviation for 

microcrystalline calcite) whose grain size is typically 1–4µm (Moshier, 1989), but the texture of these 

micrites is different between the two samples. Following the classification of micrite microtexture 

proposed by Lambert et al. (2006) and Deville de Periere et al. (2011), the micrite in sample Carb-A is 

mainly a “tight micrite”, spatially varying from anhedral compact to fused, with grains typically 1–2µm 20 

in diameter; micrite in sample Carb-B is a “porous micrite” varying from rounded to subrounded, with 

anhedral to subhedral, rounded grains, typically 2–4µm in diameter. Beside a micrite matrix, sample 

Carb-A exhibits vuggy-like pores either rounded, up to about 60µm, or more elongated, up to 300µm in 

length. Sample Carb-B exhibits a spar calcite cement of grains typically 10 to 100’s of micrometers in 

diameter, as well as rounded vugs up to about 100–200µm. 25 

He-grain density, bulk density and resulting porosity, as well as air-permeability, were previously 

Solid Earth Discuss., doi:10.5194/se-2016-45, 2016
Manuscript under review for journal Solid Earth
Published: 9 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 
 

measured at room pressure and temperature on core plugs 1’’ (2.5 cm) in length and diameter (Vialle et 

al., 2013). The associated errors did not exceed 0.5%, 1%, and 2%, respectively. P- and S-wave 

velocities, at 1 and 0.7 MHz frequency, respectively, were acquired on dry samples under increasing (up 

to 30 MPa) and decreasing hydrostatic stress. Velocities were measured by using a pulse-transmission 

technique. The errors in VP and VS are about 1%. The results are listed in Tables 1 and 2. The obtained 5 

grain densities (2.69 ± 0.01g/cm3 and 2.70 ± 0.01g/cm3, for samples Carb-A and Carb-B, respectively) 

are in agreement with a mineralogy of pure calcite (Mavko et al., 2009). 

2.2 Nano-indentation 

Nanoindentation tests were performed to obtain stiffness (Young’s modulus) of the carbonates at the 

micrometer-scale. These tests were performed on room-dried samples consisting of two small irregular 10 

pieces, about 5 mm thick and with a surface of a few cm2, taken from the cuttings of the 1’’ core plugs 

of Carb-A and Carb-B. Prior to testing, the surface of each sample was polished with carbide paper (grit 

120). Roughness (Sq) of the surface measured by DS 95 AFM system (Semilab) on 10µm x 10µm areas 

was 1.4µm for Carb-A and not measured for Carb-B (RMS values). The IBIS nano-indentation system 

(Model B, Fisher-Crips Laboratories Pty.Ltd.) is equipped with a Berkovich-type diamond indenter 15 

(Lebedev et al, 2014) and was used in a static mode: the tests consist in continuously recording the load, 

P, and the displacement, h, of the indenter as it pushes into and withdraws from the surface of the 

sample. A constant maximum loading force of 10mN and an initial contact force of 0.15mN were used. 

In total, 961 (31 x 31) measurements were performed on a 300 x 300µm surface with a spacing of 10µm 

between measurement points. 20 

Typically, the extraction of the mechanical properties is achieved by using the P-h curves and by 

applying a continuum scale mechanical model to obtain the indentation modulus M: 

		
M =

def π
2

S
Ac

                (1) 
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where S the is unloading indentation stiffness 
		
S = dP dh( )

h=hmax
and Ac the contact area, extrapolated 

from the maximum penetration depth hmax and using the relation Ac=24.5.hmax
2 according to the 

geometry of Berkovitch-type indenters.  

Data was further corrected considering deviation of the indenter tip from ideal geometry, initial 

penetration into the rock below a load threshold and compliance of the loading column, leading to a 5 

nominal uncertainty of indentation moduli of < 2GPa. 

Young's moduli , 𝐸,  can be calculated from the indentation moduli according to 

		
1
M

=
1−ν 2

E
+
1− vi2
Ei

  (2) 

Indenter properties are 𝐸i= 1220GPa and 𝜈i = 0.06, according to Klein & Cardinale (1992) and Fischer-

Cripps, (2004) for diamond material. Each performed measurement covers a projected surface of about 10 

40µm² on average (which corresponds to an equilateral triangle with a side of 6µm), and contains both 

pores and solid grains. A Poisson’s ratio, 𝜈, has also to be assumed for each nano-indentation 

measurement: even though we can compute it from the laboratory ultrasonic P- and S- wave 

measurements at the core scale, there is no reason to assume that this value is constant for each 

individual measurement. Figure 1 displays the distribution of the indentation moduli for both Carb-A 15 

(left) and Carb-B (right). 

3 The CT-datasets 

3.1 Procedure to get CT-Images 

Two samples were prepared for imaging with micro-XRCT from the cuttings, one from Carb-A and one 

from Carb-B. A cylindrical-shape sample of 1.5cm in height and 2mm in diameter was achieved by 20 

gently grinding the cuttings, first on the side on a rock saw blade, and then by hand using sand paper 

(grit 120). This procedure allows obtaining very thin cylinders while minimizing mechanical damage 

that classical drilling would produce. These cylindrical samples were then glued with Crystalbond509 

(SPI suppliers) on a 2mm diameter flat-head metal pin, which was itself inserted in the core holder of 

the micro-tomograph. The 3D X-ray Microscope Versa XRM 500 (Zeiss - XRadia) was used with a X-25 
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ray energy of 60keV. Two different settings of source-to-sample distance were used to achieve two 

nominal voxel sizes of (3.4µm)3 and (0.6µm)3 for Carb-A, and of (3.4µm)3 (“low” resolution) and 

(1.1µm)3 (“high” resolution) for Carb-B. X-ray microscope and image acquisition settings are 

summarized in Table 3 for each of the two samples.  

The number of radiographic projections acquired during sample imaging with “low” and “high” 5 

resolutions were 3001 and 5001, respectively. The total scanning time for one sample was about 8h. 

Initial cone-beam 3D image reconstruction was performed using internal “Reconstructor” software 

(Zeiss-XRadia). To illuminate geometrical artefacts during reconstruction a secondary reference was 

acquired for samples image with maximum resolution. 

3.2 Segmentation procedure 10 

In addition to solid grains and pore space different micritic phases are visible in the raw images of the 

scans entailing an advanced segmentation procedure. For our segmentation (Figure 2) we select a region 

of interest (ROI) from the raw data of the two types of carbonates with two different resolutions (Tab 

3). The ROI is subdivided in eight partly overlapping sub-volumes, each of a size of 4003 voxels 

(Figures 3 and 4). For the low-resolution images, it gives thus eight cubes with a side of 1.37mm for 15 

both samples, and for the low-resolution images, 8 cubes with a side of 0.25mm for Carb-A and of 

0.46mm for Carb-B. 

Our segmentation workflow is applied to the full ROI including all subvolumes. Image enhancement 

and segmentation steps were carried out using the software package Avizo Fire 9 (FEI Visualization 

Sciences Group). Before actual segmentation the image noise and scan artefacts are reduced while 20 

preserving interfaces using a non-local mean image filter calibrated for the appropriate dimensions and 

kernel window sizes. Note that every step of image enhancement changes the original data set affecting 

subsequent steps required for data analysis.  

The image-enhanced datasets were segmented into classes using global thresholds for the covered range 

of grey-values. Considering that the samples represent quasi monomineralic calcitic rocks we identified 25 

the following classes illustrated in Figures 5 and 6: 

• high-confidence pores (illustrated with dark blue color), 
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• high-confidence mineral (illustrated with dark red color), 

• and five classes in between the mineral class and the pore class. 

A non-negligible part of the pore space is below the resolution limit of the µ-CT scans. cf. results of 

mercury intrusion, Figure 6 of Vialle et al., 2013, showing pores and pore throats as low as 0.06µm.  

4 Numerical Results 5 

In order to numerically calculate the effective intrinsic permeability k of the digitized rock sample we 

calculate the fluxes under creeping flow condition based on a parallelized Stokes-solver. The 

parallelized Finite Differences-based Stokes-solver is suitable for the calculation of effective hydraulic 

parameters for low and high porous materials (cf. Osorno et al., 2015). Using volume averaging 

technique, we coarse-grain the local velocity field u(x) obtaining the global velocity component um in 10 

flow direction. 

The intrinsic permeability 𝑘 is calculated with Darcy’s law:  

𝑘 = ! !!
!!

.       (3) 

The pressure gradient Δ𝑝 is imposed with pressure boundary conditions in the numerical simulations. 

The dynamic viscosity of the pore fluid is 𝜇.  15 

To obtain effective P- and S-wave velocities of the digitized rock samples we use a technique described 

in detail in Saenger et al. (2011) and references therein. The basic idea of this approach is to study 

speeds of elastic waves through heterogeneous materials in the long wavelength limit (pore size ≪ 

wavelength) using the RSG FD algorithm (Saenger et al., 2000) for the simulation of elastic wave 

velocities (cf. Andrä et al. 2013a,b). 20 
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4.1 High Resolution 

4.1.1 Permeability  

Permeability calculations were realized for selected sub-samples of the Carb-A and Carb-B samples. 

The domain size of the Carb-A (0.43 mm) and Carb-B (0.78 mm) high-resolution samples is smaller 

than the low resolution (2.4 mm for Carb-A and Carb-B), i.e. less representative of the material, 5 

therefore we investigate numerically only the most relevant subsamples. The samples are selected in a 

way that their porosities are closest to the experimentally determined porosities. Further, to discuss 

extreme values, we additionally chose samples where the difference between numerical and 

experimental porosity is maximized. 

Figure 7 left hand side displays the intrinsic permeability calculated for the Carb-A high resolution. The 10 

porosity range of the subsamples is higher than the experimentally determined porosity. In addition, the 

numerically calculated permeability values are significantly lower than the values obtained for the low-

resolution samples. Figure 7 right hand side shows the results of the intrinsic permeability calculated for 

the selected high-resolution samples of the Carb-B. It can be observed, that the high-resolution sample 

show a much lower variation between the extreme values.  15 

From the results of the high-resolution samples, Carb-A and Carb-B, it could be observed that the 

variation in pores channels arrangement is significant and the permeability in the different subsamples 

of the same material does not necessarily increase with the porosity increment. 

4.1.2 Elasticity 

Several micritic phases have been identified in the raw images of the carbonate rock. The porosity of 20 

these regions cannot be determined exactly, as some pores are below the resolution of the scans: 

typically, micrites exhibit pore sizes with a maximum diameter of 1µm (Moshier, 1989; Cantrell and 

Hagerty, 1999), and pore sizes as low as 0.06µm have been measured by MICP for the samples under 

investigation (Vialle et al., 2013). To account for the unresolved pore space we perform a number of 

two-phase simulations. For these simulations we assign vacuum properties to the pore phase, while the 25 

rest of the digital image including the micritic phase will be assumed to be solid with the mineral 

properties of calcite (e.g. Andrae et al., 2013b). For the second simulation, we assign vacuum properties 

Solid Earth Discuss., doi:10.5194/se-2016-45, 2016
Manuscript under review for journal Solid Earth
Published: 9 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



9 
 

to the pores and the first micritic phase, while the rest will be assumed to be solid. We continue this way 

for all micritic phases, so that the last simulation assigns the mineral properties of calcite only to the 

high-confidence mineral phase. By this technique we obtain a porosity-velocity trend (Figure 8) for any 

random selection of high-resolution sub-samples for Carb-A and Carb-B:  

vp = 6259.1m/s -  φ * 9640m/s + 3381m/s  * φ2           (4) 5 

vs = 3237.2m/s -  φ * 3237.2m/s                                   (5) 

This porosity-velocity trend is exactly the same as has been observed for a carbonate dataset from a 

different location used in Saenger et al. (2014). In their paper this trend has been observed for three 

different resolutions (65nm, 1µm, 4µm). 

4.2 Low Resolution 10 

4.2.1 Permeability 

Similar to the procedure of the numerical simulation for elasticity we vary the sample porosity. This 

way we get six possible domains for each subsample with different porosities. To reduce computational 

times for the Stokes flow simulation we eliminate the disconnected pores. Some sub-samples solid-pore 

configurations with the lower porosities do not present connected pores, and we assume for the effective 15 

permeability k=0. 

Figure 9 present the permeability values for the Carb-A (left hand side) and Carb-B (right hand side) 

samples as a function of the porosity. Additionally we performed the Stokes flow simulations in three 

directions (X, Y and Z) for the Carb-A sample. Figure 11 (left hand side) shows that the Carb-A sample 

permeability is anisotropic with a variation between directions of up to 80%. In some sub-samples the 20 

permeability value varies by up to two orders of magnitude.   

The largest sample available for the low resolution scan of Carb-A is 2.4mm x 2.4mm x 2.4mm (6893 

voxels). The permeability calculated for this sample is 13D for a porosity of 0.173. 

4.2.2 Elasticity 

For the low-resolution scans we repeat the two-phase simulations for Carb-A and Carb-B as described 25 

in section 4.1.2 (Figure 10). Interestingly, the two-phase trend given by Equations (4) and (5) is 
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confirmed in three cases: P- and S-wave velocities of Carb-A and  S-wave velocities of Carb-B. For the 

case of Carb-B and P-wave velocities we observe a slightly different trend (cf. eq. (4)) that we illustrate 

with a blue dashed-dotted line in the left hand side of Figure 10: 

vp = 6259.1m/s -  φ * 7970m/s + 1700m/s  * φ2        (6) 

Especially in the low-resolution case we expect to have images with a large amount of unresolved 5 

porosity, mainly due to micritic phases. Therefore we perform multi-phase simulations and vary the 

porosity by assigning effective elastic properties to an interval of micritic phases (always starting with 

the class closest to the high-confidence pore phase). As effective medium approach we use the trend 

given by the simulations using two single phases only (Equations (4) and (5)). Despite the interval of 

micritic phases we assign vacuum values for the high-confidence pores and use for the remaining 10 

phases the known elastic moduli of calcite (e.g. Andrae et al., 2013b). The results are displayed with 

green dots for Carb-B in Figure 10. We repeat the procedure with different intervals of the micritic 

phases. There are three interesting observations: (1) The resulting effective velocities are always 

significantly below the observed two-phase trend, (2), the curves for different intervals will intersect 

each other, and (3), the experimental determined velocities for high confining pressures are between the 15 

multi-phase results and the two-phase trend as described above. 

5 Discussion 

In this paper we compare results from laboratory investigations with numerical estimates based on 

digital images. Note that in laboratory experiments we use samples on the cm-scale for the 

determination of permeability and ultrasonic velocities and compare it with DRP-predictions based on 20 

images on the mm-scale. Especially because of the known heterogeneity of carbonates there is always  a 

risk that the selected scanned area is not representative compared to the full sample size used for 

laboratory characterizations. 

 

5.1 Discussion Experimental Characterization 25 

Even with the highest resolution currently available in micro-XRCT imaging there will be a significant 

amount of unresolved pore features which need to be treated in the DRP workflow (Saenger et al., 
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2015). On the grey-scale intensity level histograms of the low- and high-resolution images of the micro-

CT scanning (Figure 5) this is reflected in a continuum in the intensity levels between the phase 

identified as pores and the phase identified as calcite grains. In this paper we have dealt with these 

micritic phases by replacing, step-by-step, and in a cumulative way, each of the micritic phases by void, 

and establishing a porosity-velocity trend. The nano-indentation technique provides a measure for the 5 

distribution of effective elastic properties at the micrometer-scale, and can thus potentially constrain the 

input parameters for the different phases identified during the segmentation. To be able to do so, nano-

indentation needs to provide bulk and shear moduli from each of the measurements (load-displacement 

curves) and we need to obtain effective bulk and shear moduli values for each of the identified phases in 

the micro-tomography (pores, calcite grains and the five micritic phases). However, if nano-indentation 10 

technique is a well-established technique in material sciences, which deals with homogeneous, purely 

elastic materials, this is, as of today, not yet the case for rocks, which are heterogeneous materials with 

both elastic and non-elastic behaviour (creep). Though nano-indentation tests provide significant 

insights into elastic properties of heterogeneous rocks such as carbonates (Lebedev et al., 2014; Vialle 

& Lebedev, 2015) or shale (Ulm & Abousleiman, 2006; Abousleiman et al., 2007), there are still some 15 

points to be looked at before using the derived values of Young’s (or shear and bulk) moduli in a 

quantitative way for DRP: value of Poisson’s ratio to be used, effect of surface roughness, local 

mechanical damage induced on the sample’s surface by polishing techniques, etc.  Nonetheless, the 

histograms of the indentation moduli of both samples show a broad distribution of moduli values 

ranging from very low values (a few GPa, where the indenter tip measures stiffness of an area mostly 20 

made of a pore) to values consistent with calcite. The existence of these intermediate values is 

consistent with the existence of micritic phases identified with X-ray tomography. However, we did not 

observe two peaks in the histogram for the nano-indentation results (Figure 1) in contrast to the 

histograms of the scanned micro-XRCT-images (Figure 5). Therefore the direct translation of moduli 

derived from nano-indentation remains also to be difficult. The “resolution” of nano-indentation used in 25 

this study allows for determining effective elastic properties at slightly bigger scales than that used here 

for the micro-XRCT. 
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Regnet et al. (2014) showed that there is a relationship between micrite microstructure and laboratory 

ultrasonic velocities on core samples, with samples with higher content of ‘tight micrite’ exhibiting 

higher velocities and samples with higher content of ‘microporous micrite’ exhibiting lower velocities. 

Studied core samples were though a mixture of different types of micrite and the measured velocities 

represent effective properties at the core scale. This observation is reflected in the established porosity-5 

velocity trends (Equations 4 and 5): micritic phases with density closer to that of calcite (‘tight 

micrites’) have higher velocities than micritic phases with lower density closer to that of pores 

(“microporous micrites’). 

5.2 Discussion Porosity: Experiments vs. Digital Rock Physics 

After the segmentation it is also possible to estimate the porosities of the samples. Based on the 10 

suggested workflow described in section 3.2 there will be a lower and upper bound. For the lower 

bound we will treat only the “high-confidence pores” as pores; for the upper bound we count only 

“high-confidence minerals” as minerals.  

We obtain a porosity range between 25% and 35% for the high-resolution data of Carb-A and a range 

between 7.5% and 31% for the low-resolution data. We observe that the mean value is in rough 15 

agreement with the experimentally determined porosity of 16.7% (Vialle et a. 2013) only for the low-

resolution case. Although also the experimental value comes with an error we conclude that the high-

resolution dataset for Carb-A is maybe not representative for the full sample. In case of Carb-B the 

intervals range from 13% to 45% and 7% to 48% for the high-resolution and low-resolution case, 

respectively. Here the mean value is in both cases closer to the experimentally determined porosity of 20 

29.4%. 

We conclude that the porosity values of carbonates using micro-XRCT-data will only provide estimates 

with a relatively high uncertainty due to the significant amount of unresolved pore features in the 

images. An indication is the result of the mercury-intrusion experiments presented by Vialle et al. 

(2013): The pore throats of the micritic phase are mainly below the resolution of available micro-XRCT 25 

devices. 
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5.3 Discussion Permeability: Experiments vs. Digital Rock Physics 

Permeability numerically estimated for Carb-B presents an error of 97% on average with respect to the 

experimental value. In some cases the error is as low as 55%. The numerical error in comparison with 

the experimental values is within the expected range for the numerical method at these porosities, cf. 

Table 1 in Osorno et al. (2015). 5 

Experimental results for Carb-A sample are below the measurement error tolerance. This could imply a 

sample with no connected pores between the inlet and outlet defined for the experiment. The numerical 

estimation of the permeability for the Carb-A low resolution sample (on average 7 D) is four orders of 

magnitude higher than the experimental estimation. In the high resolution case the numerical estimation 

is closer to experimental results (on average 100 mD), but the porosity presents a large numerical error, 10 

therefore we do not take this domain as representative of the sample. However the numerically 

calculated permeability does not differ much from values found in the literature for porous materials 

with alike porosity (cf. Andrä et al., 2013b).  On the other hand it is observed that for a porosity below 

25% permeability values of carbonates can span several orders of magnitudes (e.g. Figure 3 of Vialle et 

al. 2013). Therefore we suggest considering a statistically significant number of samples to characterize 15 

a formation. 

5.4 Discussion Elasticity: Experiments vs. Digital Rock Physics 

There are two important observations. The two-phase trend (displayed with solid and dashed-dotted 

lines) seems to be an upper bound for velocities. This data-driven upper bound is much stricter than the 

bound given by Hashin-Shtrikman (see Figure 8) and is now confirmed for several carbonates using 20 

several resolutions (this study and Saenger et al. 2014). Only for Carb-B we observe a slightly different 

trend for the low-resolution case for P-waves (equation (6) and Figure 10 right hand side). 

The trend given by the envelope of the multi-phase simulations (displayed by green dots in Figure 10) is 

not a strict lower bound, because the shape will strongly depend on the applied method to determine 

effective elastic properties for areas which are below the resolution limit of the used XRCT-technique. 25 

The best choice to our knowledge is the two-phase trend discussed above. This trend can be regarded as 

“carbonate-data-driven” effective medium approach. We suggest implementing here in the future also 
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the findings of the nano-indentation experiments. However, we observe that the velocities obtained for 

the multi-phase simulations are in a reasonable agreement with laboratory measurements. This is the 

case for a known porosity determined in complementary laboratory studies (see also section 5.1). For 

carbonates the distribution of the micritic phases and their effective elastic behavior is crucial to predict 

the effective wave speeds. 5 

5.5 Discussion Anisotropy: Elasticity vs. Permeability 

In general we don't observe any significant anisotropy for permeability and for velocities of the 

considered samples. However, a few samples are out of this general trend. One example is a sub-sample 

of Carb-A (low-resolution case), for which we show the results for P-wave velocities and permeabilities 

in Figure 11. Interestingly, the significant anisotropy for the permeability is not present for the velocity.  10 

6 Summary 

With the current imaging techniques it remains difficult to resolve microstructures (on sub-micrometer 

scale) and image a representative volume at the same time, which is essential to understand the effective 

material properties of rocks. The porosity of the rock samples is the most relevant parameter. To 

overcome this problem, we have conducted a careful calibration of DRP estimates with laboratory data. 15 

For carbonate samples it is difficult to estimate the porosity from raw-CT data. Therefore, we use our 

presented numerical results in an inverse way. We suggest using the porosity determination from the 

laboratory and go back to our low-resolution results given in Figure 9 and 10. With a given porosity we 

can estimate the permeability and the effective wave velocities. 

In case of the studied samples Carb-A and Carb-B, we can predict P- and S-wave velocities with a good 20 

agreement to laboratory results. The predicted permeability values are only in good agreement for Carb-

B. Most probably the low-resolution image of Carb-A is not representative for the sample used in the 

laboratory.  

However, for carbonate rock the resolution of the XRCT is not sufficient for a more exact estimate 

because the micritic phases cannot be resolved. The effective elastic properties have to be 25 

approximated. Our suggestion is to use the trend of the two-phase simulations. The implemented 
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workflow in this paper can be applied in general for numerical estimates of mechanical and transport 

properties of carbonates. Because of the known strong heterogeneity of carbonates we suggest to use a 

statistically significant amount of digital images to characterize a formation.  
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Figures 

 
 

  
Fig. 1: Nano-Indentation results for Carb-A (left hand side) and Carb-B (right hand side). In blue we 5 

illustrate the corresponding moduli range from ultrasonic experiments on dry samples from 0 to 30MPa 

confining pressure, and in green we illustrate the moduli range given by the solid anisotropic calcite 

crystal. Overall we observe that the medium effective indentation module M is slightly stiffer for Carb-

A (26GPa vs. 25GPa).  

 10 
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Fig. 2: Simplified segmentation workflow as applied in this study.  
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Fig. 3: Sketch to illustrate the segmentation geometry (here for Carb-B; high-resolution). The full cube 

is subdivided into eight partly intersecting sub-volumes with a size of 4003 gridpoints. Those sub-

volumes are used in the numerical simulations to estimate effective material properties. 
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 5 
 
Fig. 4: Slices of the raw tiff-images of the scanned samples. Top row: Carb-A with high (left) and low- 

resolution (right). Bottom row: Carb-B with high (left) and low resolution (right). 
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Fig 5.: Color-coded histograms of the scanned samples. Top row: Carb-A with high (left) and low 5 

resolution (right). Bottom row: Carb-B with high (left) and low-resolution (right). 
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Fig 6: Slices of the segmented images used for the numerical simulations to determine permeability and 

velocities. Top row: Carb-A with high (left) and low-resolution (right). Bottom row: Carb-B with high 5 

(left) and low resolution (right). 
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Fig. 7:  Intrinsic permeability for the 8 sub-samples. Results are given for the extreme porosities 

configuration of the Carb-A (left hand side) and Carb-B (right hand side) high-resolution samples. 

 

  5 
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Fig. 8: Effective P- and S-wave velocities (red and blue dots, respectively) for simulations based on a 

two-phase segmentation. The results were obtained for Carb-A (left hand side) and Carb-B (right hand 

side). The blue and red lines are the velocity trends given by equations (4) and (5). The green lines are 

derived by using the upper Hashin-Shtrikman bounds. For details please refer to the text. 5 

 

  

Solid Earth Discuss., doi:10.5194/se-2016-45, 2016
Manuscript under review for journal Solid Earth
Published: 9 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



27 
 

 
Fig. 9: Intrinsic permeability as a function of porosity. Results for the 8 sub-samples of the Carb-A (left 

hand side) and Carb-B (right hand side) low-resolution. Squares markers display each of the pore-solid 

configurations.  
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Fig 10: Effective P-wave and S-wave velocities (red and blue dots, respectively) for simulations based 

on a two-phase segmentation. The results were obtained for the low-resolution images of Carb-A (left 

hand side) and of Carb-B (right hand side). The blue and red lines are the velocity trends given by 

equations (4) and (5); the blue dashed-dotted line is the trend given by equation (6). The experimental 5 

results (interval from 0 to 30 MPa confining pressure) are illustrated with black crosses connected with 

yellow bars for comparison. The green dots display the results of the multi-phase simulations (only 

performed for Carb-B and for p-waves). For details please refer to the text.  
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Fig. 11: Left hand side: Intrinsic permeability for sub-sample 111 of Carb-A low resolution. 

Permeability calculated from flow simulated in X, Y and Z directions. Right hand side: P-wave 5 

velocities for all propagation directions of the same sup-sample. The solid line is the velocity trend 

given by equation (4). The significant anisotropy visible in permeability is not present for the velocities. 
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Tables 

Table 1: Helium bulk and grain density (in g.cm-3), helium porosity (in PU) and air-permeability (in 

mD) measured at benchtop conditions, for Carb-A and Carb-B. Permeability of plug Carb-A is below 

the sensitivity level of the apparatus used (0.1 mD). Values are from Vialle et al. (2013). 

Sample ID  Porosity Bulk density Grain density Permeability 

Carb-A  0.167 ± 0.002 2.24 ± 0.01 2.69 ± 0.01 < 0.1 

Carb-B  0.294 ± 0.003 1.90 ± 0.01 2.70 ± 0.01 60 ± 5 

  5 
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Table 2: Pressure dependence of the elastic-wave velocities for the two studied samples. Pressure is in 

megapascal, and P- and S-wave velocity are in kilometers per second. Values are from Vialle et al. 

(2013). 

 

 Carb-A Carb-B 

Pressure Vp Vs Vp Vs 

0 5.007  2.835  2.769  1.754 

2.5 5.045  2.838  3.295 2.032 

7.5 5.091  2.835  3.477  2.191 

10 5.100  2.834  3.504 2.226 

20 5.116  2.822  3.551  2.295 

30 5.113 2.821  3.553  2.290 

25 5.114 2.821  3.548  2.284 

15 5.085  2.822  3.527  2.268 

5 5.048  2.840  3.384  2.195 

0 5.033  2.842  2.792  1.785 

 5 
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Table 3: CT-scanner parameters of the acceleration voltage AV and current, respectively. Sample 

abbreviations are explained in Table 1. 

 Carb-A Carb-B 

Pressure Low resolution High resolution Low resolution High resolution 

Pixel size 3.4348 µm  0.6245 µm 3.4352 µm 1.1450 µm 

Image size 1012 * 1012  1012 * 1012 1013 * 1013 1013 * 1013 

Acceleration 

voltage 

60 kV  60 kV 60 kV 60 kV 

Current 80 µA 80 µA 83 µA 83 µA 

 

 

 5 
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